

Detecting microstructural deviations in individuals with deep diffusion MRI tractometry

Maxime Chamberland, PhD

Along-tract profiling

A. Bundle segmentation

Jones et al. MRM (2005); Corouge et al. MedIA (2006); Yeatman et al. PLOS One (2012); Colby et al. Nimg (2012); Cousineau et al. Nimg Clin. (2017); Yeatman et al. Nat. Comms. (2018)

Understanding clinical heterogeneity

Marquand AF. et al. Biological psychiatry (2016)
 Yeatman J. et al. Nature Communications (2018)

One of the main goal of neuroimaging is *personalized-medicine*

Normative modeling

Idea: learn a set of normative microstructural features from healthy controls only

To shift from group-wise comparisons¹ (N vs M) to individual diagnosis (1 vs M) in diffusion MRI (dMRI) would enable the analysis of rare cases and clinically-heterogeneous groups².

Jones DK., and Cercignani M. NMR in Biomedicine (2010)
 Marquand AF. et al. Biological psychiatry (2016)

d

Tract-profiling Univariate *z*-score approach

Cerebral palsy

Left Corticospinal

Left: Yeatman J. et al. **PLOS One** (2012) Right:Yeh PH. et al. **Human Brain Mapping** (2017)

Multivariate PCA approach

Left: Taylor PN. et al. **Neurology** (2020) Right: Yeatman J. et al. **Nature Communications** (2018)

Multidimensional generalization

Yeatman J. et al. PLOS One (2012), Taylor PN. et al. Neurology (2020), Chamberland M. et al. Nature Computational Science (2021)

Deep autoencoder

Unsupervised learning & normative modeling

Tractometry approach

Input features

- Automated tract segmentation using TractSeg¹
- Tractometry:
 - FA, MD (low $b = 1200 \text{ s/mm}^2$)
 - **RISH0**, **RISH2** (high b = 6000 s/mm²)
- Feature vector \rightarrow n = 26 tracts × 20 locations = 520 features for each subject.

Data acquisition and pre-processing steps are detailed in²

Feature vector (**x**)

Discriminating power

White-matter anomaly detection in CNV participants

90 healthy controls children (HC)8 children with copy number variants (CNV)Train: 80% HC, repeat 100x

Consistent locations but not required

Tract-specific deviations

White-matter anomaly detection in CNV participants

MAE: Mean Absolute Error

Focal cortical dysplasia

White-matter anomaly detection in epilepsy

75 healthy controls1 epilepsy patient

Linking brain heterogeneity with epidemiological findings in schizophrenia

Challenging task at hand \rightarrow a **supervised** support vector machine classifier provides similar accuracy (AUC = 0.65 ± 0.13)

109 healthy controls

43 schizophrenia patients

Train: 80% HC, repeat 100x

Visual Analytics Framework

github.com/chamberm/detect

Additional information

Peer review information *Nature Computational Science* thanks Laurent Petit, Daniel C. Alexander and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Drop files here to upload									
browse files			Asin -	A MAG			- Tilling		
Upload profiles				100			eleci		
Drop files here to upload or				1	A polyci				
browse files				1.7	Analys	15			
Savename	De	tect							
ANALYSIS_01	A deep	learning	based a	nomaly detect	on framework	for Tractometr	y.		
	Author	: Maxime	Chambe	erland (chambe	erm.github.io)				
Choose a metric below									
RISH0 -									
Choose a patient group below	1. V	isuali	satio	n sectio	n				
2	Sł	Show demographics							
	V Sł	now datas	et						
Method		ion data							
O Z-score	Tract-p	profiles d	atasheet						
• AutoEncoder		Group	CID	AF_left_01	AF_left_02	AF_left_03	AF_left_04	AF_left_05	
○ SVM	0	0	C010	0.0778	0.1207	0.1317	0.1329	0.1291	
Iterations	2	0	C012	0.0653	0.1031	0.1344	0.1438	0.1293	
50	3	Θ	C013	0.0609	0.0931	0.1208	0.1286	0.1344	
50 - +	4	0	C014	0.1044	0.1223	0.1277	0.1341	0.1441	
Regress confound?	5	Θ	C015	0.0698	0.1152	0.1364	0.1439	0.1459	
	6	0	C016	0.0709	0.1211	0.1271	0.1283	0.1335	
Run	7	0 0	C017 C020	0.0620	0.1265	0.1300	0.1063	0.1098	
			2 R	anort	-	_			
			۲۰۱۱ د	toEncodor			AutoEconder		
Model Loss	30	0	Au	toencoder	0.24		AutoEncoder		
0.3 \ Train	Loss a	5			(JAC 0.22				
Valid	Loss	0	ſ		U 0.20				
SS 0.2	ty es	5			e 0.18		_		
0.1	ensit	0			S 0.16				
	õ				E 0.14				

Chamberland M. et al. **Nature Computational Science** (2021) Commentary News & Views by Rokem A. **Nature Computational Science** (2021)

www.ru.nl/donders

maxime.chamberland@donders.ru.nl

@MaxChamb
chamberm.github.io

