Tractography with Machine Learning

Peter Neher*, Philippe Poulin, Daniel Jörgens, Marco Reisert, Itay Benou, Klaus Maier-Hein

*Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ)

Fiber Tractography

Tractography is a difficult ill-posed problem

Can ML help?

- 1. No hand-crafted modelling assumptions are necessary.
- 2. Straight-forward integration of additional sources of information.
- 3. Possibly reduce manual tinkering with typical tractography parameters.
- 4. Can include an arbitrarily large neighborhood in their decision making process.

Challenges

- 1. Availability and validity of annotated data
- 2. Problem of generalizability
- 3. Explainability of decisions made by the ML system

Classes of ML-based tractography approaches

1. ML-based local modeling

2. Sequence-based approaches

3. Global approaches

Bundle **m**

ML-based local modeling

ML-based local modeling: RF-based local modelling

https://github.com/MIC-DKFZ/MITK-Diffusion/

- 1. Random forest classification
- 2. Enables probabilistic and deterministic tractography
- 3. Rather complicated neighborhood sampling and voting scheme

ML-based local modeling: Entrack

- 1. CNN-based
- 2. Deterministic regression of next direction
- Estimation of the parameters of Fisher-von-Mises (FvM) distribution
 - \rightarrow Entrack
- 4. Directly process neighboring voxels

https://github.com/vwegmayr/entrack

Performance: ISMRM 2015 Tractography Challenge Data

Model	Training Data	VB	IB	VC	OL	OR
RF (Neher)	5x HCP	23/25	94	52%	59%	37%
CNN (Wegmayr)	3x HCP	23/25	57	72%	16%	28%
Entrack (Wegmayr)	1x HCP	23/25	85	51%	23%	39%

Sequence-based approaches

Sequence-based modeling: Learn-to-track

https://github.com/ppoulin91/learn2track (Theano based)

- 1. RNN-based
- 2. Deterministic regression of next direction

Sequence-based modeling: DeepTract

- 1. RNN-based
- 2. Formulated as classification problem similar to Neher et al.
- Probabilistic determination of next direction

https://github.com/itaybenou/DeepTract

Sequence-based modeling: Track-to-learn

- 1. Unsupervised approach using reinforcement learning
- 2. Deterministic regression of next direction
- 3. State: 6-neighborhood signal, WM mask values, 4 previous steps
- 4. Reward based on alignment with the underlying fODF peaks as well as with the previous direction

Model	Training Data	VB	IB	VC	OL	OR
RF (Neher)	5x HCP	23/25	94	52%	59%	37%
CNN (Wegmayr)	3x HCP	23/25	57	72%	16%	28%
Entrack (Wegmayr)	1x HCP	23/25	85	51%	23%	39%
<i>Learn-to-track</i> (Poulin)	ISMRM phantom	23/25	130	42%	64%	35%
DeepTract (Benou)	ISMRM phantom	23/25	51	41%	34%	17%
Track-to-Learn (Théberge)	-	23/25	161	68%	56%	n/a

Global approaches

Global modeling: TractSeg

- 1. U-Net based segmentation of 72 tracts
- 2. Segmentation of tract endpoints
- Computation of tract orientation maps (TOM)
- 4. Bundle-specific tractography

Peter F. Neher

https://github.com/MIC-DKFZ/TractSeg/

Wasserthal et al., "TractSeg - Fast and accurate white matter tract segmentation", Neuroimage 2018 Wasserthal et al., "Combined tract segmentation and orientation mapping for bundle-specific tractography", Medical Image Analysis 2019

Global modeling: HAMLET

The HAMLET code is available from the authors upon reasonable request

- 1. Rotation Covariant Tract Estimation
- 2. Similar to a CNN but convolutions
 respect rotations in the way that if the
 input is rotated the output rotates
 accordingly
- 3. In theory allows lower model complexities
- 4. Tensor maps of 12 tracts that can be used for tractography

Streamline classification

Streamline Classification

https://github.com/FBK-NILab/app-classifyber

Streamline Classification

https://github.com/FBK-NILab/app-classifyber

Streamline Classification

https://github.com/FBK-NILab/app-classifyber

Short conclusion

- 1. Local and sequence-based methods are currently only interesting from an academic point of view
- 2. Global approaches and streamline classification show real improvements over the state of the art
- 3. Main problem at the moment: training and validation data
 - Difficult to generate
 - Currently no comprehensive and also variable dataset in terms of type (in silico, in vivo, ex vivo), parameters (different scanners, acquisition settings) and subjects (number, age, healthy and diseased)

Some datasets

1	Simulated FiberCup	https://www.nitrc.org/frs/shownotes.php?release_id=2341	
2	ISBI 2013 Challenge	http://hardi.epfl.ch/static/events/2013_ISBI/training_data.html#ground- truth-fiber-geometries	
3	3D VoTEM	https://my.vanderbilt.edu/votem/	
4	ISMRM 2015 Challenge	https://zenodo.org/record/572345 https://zenodo.org/record/579933 https://zenodo.org/record/1007149	8
5	Fiberfox random fiber phantoms	https://zenodo.org/record/2533250	
6	IronTract Challenge	https://irontract.mgh.harvard.edu/	Q ^(a) ^(b)
7	HCP-minor bundle dataset (40 subjects)	https://brainlife.io/pub/5e1de1371875e1ab6794cce5	
8	TractSeg dataset (105 subjects)	https://zenodo.org/record/1088278	
9	99 simulated brains (99 subjects)	https://inrepo01.inet.dkfz-heidelberg.de/record/156611?In=en	
10	TractoInferno (200 subjects)	https://openneuro.org/datasets/ds003900/versions/1.1.0	

Thank you!

The MIC Team www.dkfz.de/en/mic

- Fiberfox, ML Tractography, TractSeg GUI and much more in MITK Diffusion: <u>https://github.com/MIC-DKFZ/MITK-Diffusion</u>
- TractSeg as python package: https://github.com/MIC-DKFZ/TractSeg
- Semiautomatic segmentations of 72 tracts in 105 subjects:

https://zenodo.org/record/1285152

99 simulated brains dataset: https://inrepo01.inet.dkfzheidelberg.de/record/156611?ln=en

