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What am I talking about today?

𝑆 𝑧, 𝜖|𝑦 = M 𝑧|𝑦 + 𝜖
Measured 

signal

Modelled signal
(e.g. ADC)

Noise

Tissue property
(e.g. diffusivity)

Acquisition scheme
(e.g. b-value)

Noise instantiation
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How do we solve this inverse problem?

𝑦!

𝑦"

Traditional (MLE): min
#
𝐿𝑜𝑠𝑠 𝑦|𝑆

Tackle the problem directly

Optimise over variable of interest 𝑦

Repeat optimisation for every signal

Loss for single voxel𝐿𝑜𝑠𝑠

For a given noisy 𝑆, we want the corresponding 𝑦
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How do we solve this inverse problem?

𝑤!

𝑤"

Loss averaged over 
all training voxels

𝐿𝑜𝑠𝑠

For a given noisy 𝑆, we want the corresponding 𝑦

Machine learning (ML): min
$
∑%&!
'!"#$% 𝐿𝑜𝑠𝑠 𝑤|𝑆%

Tackle the problem indirectly

Find general mapping from any 𝑆 to corresponding 𝑦

Optimise over latent variable 𝑤

Perform optimisation only once (training)
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How do we solve this inverse problem?

Traditional (MLE): min
#
𝐿𝑜𝑠𝑠 𝑦|𝑆

Tackle the problem directly

Optimise over variable of interest 𝑦

Repeat optimisation for every signal

For a given noisy 𝑆, we want the corresponding 𝑦

Machine learning (ML): min
$
∑%&!
'!"#$% 𝐿𝑜𝑠𝑠 𝑤|𝑆%

Tackle the problem indirectly

Find general mapping from any 𝑆 to corresponding 𝑦

Optimise over latent variable 𝑤

Perform optimisation only once (training)

Limitations
• Cost: expensive, scales 

linearly with newly acquired 
data

• Performance: suffers from 
local minima; each 
optimisation solved in 
isolation

Solutions
• Cost: frontloaded (training), 

then negligible

• Performance: leverages 
patterns across training voxels
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How is ML parameter estimation implemented today?

Supervised methods
e.g. Bertleff 2017, Gyori 2022

Self-supervised (“unsupervised”) methods
e.g. Barbieri 2019, Kaandorp 2021

Noise𝒚 "𝒚

Training loss (MSE)

Start with groundtruth 
parameters of interest

Simulate 
corresponding 

signals

Add 
noise

Input: 1 x voxel noisy signal
Output: signal model parameters

Minimise difference between output 
and groundtruth value (label)

Synthetic training data

𝑴(𝒛|𝒚)
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How is ML parameter estimation implemented today?

Noise𝒚 "𝒚

Training loss (MSE)

Minimise difference between noisefree signal 
representation of output and noisy input

Self-supervised (“unsupervised”) methods
e.g. Barbieri 2019, Kaandorp 2021

Supervised methods
e.g. Bertleff 2017, Gyori 2022

Replicating traditional MLE, 
regularised over a large 

training dataset

𝑴(𝒛|𝒚)

𝑴(𝒛|1𝒚)
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How do these methods compare?

Low variance: consistent parameter estimates under 
noise repetition

High bias: estimates biased away from groundtruth

Low information content: bias depends on groundtruth, 
i.e. different groundtruths indistinguishable

e.g. Gyori 2022, Grussu 2021

Supervised methods
e.g. Bertleff 2017, Gyori 2022
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How do these methods compare?

Lower bias: mean parameter estimates closer to 
groundtruth

High variance: wide parameter estimation distribution 
under noise

Loss calculated in signal-space: 
- requires differentiable loss formulation (i.e. 
MSE, Gaussian noise assumption; limits signal 
models); 
- relative parameter loss weighting limited by 
acquisition protocol 𝑧

Supervised methods
e.g. Bertleff 2017, Gyori 2022

e.g. Gyori 2022, Grussu 2021

Self-supervised methods
e.g. Barbieri 2019, Kaandorp 2021

e.g. Grussu 2021, Barbieri 2019
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Which method to use?

e.g. Gyori 2022, Grussu 2021

e.g. Grussu 2021, Barbieri 2019

Spectrum: bias/variance trade-off

Self-supervised (low bias) has practical limitations

Would like to address these limitations and move along this bias/variance spectrum

Supervised methods
e.g. Bertleff 2017, Gyori 2022

Self-supervised methods
e.g. Barbieri 2019, Kaandorp 2021
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Supervised training with a change of  label

e.g. Gyori 2022, Grussu 2021

e.g. Grussu 2021, Barbieri 2019

Rician 
noise 
model

Loss computed in 
parameter space

Supervised methods
e.g. Bertleff 2017, Gyori 2022

Self-supervised methods
e.g. Barbieri 2019, Kaandorp 2021

"𝒚

MLE

Noise𝒚 "𝒚

Training loss

𝑴(𝒛|𝒚)

Can use any signal model

Hybrid loss = 𝛼 % SupervisedMLE loss +(1 − 𝛼) % SupervisedGT loss 

Supervised methods
(MLE labels)

Epstein 2022



13

Summary of  methods

Supervised methods
(MLE labels)
e.g. Epstein 2022

Supervised methods
(groundtruth labels)

e.g. Bertleff 2017, Gyori 2022

Self-supervised methods
e.g. Barbieri 2019, Kaandorp 2021
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BIAS

VARIANCE

𝑦(: difficult to fit

Horizontal line = consistent bias Negative gradient line = biased 
towards mean

𝑦!: easy to fit

Conventional fitting
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BIAS

VARIANCE

𝑦!: easy to fit 𝑦(: difficult to fit

Conventional fitting

Supervised (GT labels)

Worse bias (depends on GT)

Lower variance
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BIAS

VARIANCE

𝑦!: easy to fit 𝑦(: difficult to fit

Conventional fitting

Supervised (GT labels)

Self-supervised

Similar (low bias) performance 
to MLE (away from noise floor)

Higher variance 
than Supervised (GT labels)

Worse 𝑦(
performance: 
underweight in signal 
space
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Conventional fitting

Supervised (GT labels)

Self-supervised

Supervised (MLE labels)

Similar bias Better performance on 𝑦(
(equal weighting) 

Similar variance

BIAS

VARIANCE

𝑦!: easy to fit 𝑦(: difficult to fit



18see Gyori 2022 for more examples

Groundtruth
value

Estimated
value

Supervised (MLE labels)Supervised (GT labels) Self-supervised
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BIAS

RMSE

𝑦!: easy to fit 𝑦(: difficult to fit

Bias worse

RMSE better
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Low value

Medium value

High value

Supervised (MLE labels)

Supervised (GT labels)

𝑦!: easy to fit



21

Is there a middle ground?

Supervised methods
(MLE labels)
e.g. Epstein 2022

Supervised methods
(groundtruth labels)

e.g. Bertleff 2017, Gyori 2022

Self-supervised methods
e.g. Barbieri 2019, Kaandorp 2021
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Is there a middle ground?

Supervised methods
(MLE labels)
e.g. Epstein 2022

Supervised methods
(groundtruth labels)

e.g. Bertleff 2017, Gyori 2022

Hybrid loss function during training:

Hybrid loss = 𝛼 % SupervisedMLE loss +(1 − 𝛼) % SupervisedGT loss 
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BIAS

VARIANCE

𝑦!: easy to fit 𝑦(: difficult to fit
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Take home message(s)

Supervised methods
(MLE labels)

Epstein 2022

Supervised methods
(groundtruth labels)

e.g. Bertleff 2017, Gyori 2022

Self-supervised methods
e.g. Barbieri 2019, Kaandorp 2021

• Bias/variance tradeoff

• Look beyond RMSE: misleading 
summary metric

• Supervised training has practical 
advantages over self-supervised

• Don’t always use GT labels – even if 
you have access to them

• Can adjust network performance by 
tailoring contribution of different 
labels
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Choice of training label matters: how 
to best use deep learning for 
quantitative MRI parameter 
estimation
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