

Choice of Training Label Matters: Deep Learning for Quantitative MRI Parameter Estimation

Sean Epstein Centre for Medical Image Computing, UCL

For a given noisy S, we want the corresponding y

Traditional (MLE): $\min_{y} Loss(y|S)$ Tackle the problem directlyOptimise over variable of interest yRepeat optimisation for every signal

For a given noisy S, we want the corresponding y

For a given noisy S, we want the corresponding y

Traditional (MLE): min Loss(y|S)

Tackle the problem **directly**

Optimise over variable of interest y

Repeat optimisation for every signal

Machine learning (ML):

$$\min_{w} \sum_{i=1}^{N_{train}} Loss(w|S_i)$$

Tackle the problem **indirectly**

Find **general mapping** from any *S* to corresponding *y*

w

Optimise over **latent variable** *w*

Perform optimisation **only once** (training)

Limitations

- **Cost**: expensive, scales linearly with newly acquired data
- **Performance:** suffers from local minima; each optimisation solved in isolation

Solutions

- **Cost**: frontloaded (training), ٠ then negligible
- **Performance**: leverages • patterns across training voxels

Synthetic training data

Self-supervised ("unsupervised") methods e.g. Barbieri 2019, Kaandorp 2021

Self-supervised ("unsupervised") methods

Supervised methods *e.g. Bertleff 2017, Gyori 2022*

e.g. Barbieri 2019, Kaandorp 2021

How do these methods compare?

e.g. Bertleff 2017, Gyori 2022

Low variance: consistent parameter estimates under noise repetition

High bias: estimates biased away from groundtruth

Low information content: bias depends on groundtruth, i.e. different groundtruths indistinguishable

e.g. Gyori 2022, Grussu 2021

How do these methods compare?

Supervised methods

e.g. Bertleff 2017, Gyori 2022

Training loss

e.g. Gyori 2022, Grussu 2021

Lower bias: mean parameter estimates closer to groundtruth

High variance: wide parameter estimation distribution under noise

Loss calculated in signal-space:

- requires differentiable loss formulation (i.e. MSE, Gaussian noise assumption; limits signal models);
- relative parameter loss weighting limited by acquisition protocol z

e.g. Grussu 2021, Barbieri 2019

Which method to use?

Spectrum: bias/variance trade-off

Self-supervised (low bias) has practical limitations

Would like to address these limitations and move along this bias/variance spectrum

Supervised training with a change of label

Hybrid loss = $\alpha \cdot \text{Supervised}_{\text{MLE}}$ loss + $(1 - \alpha) \cdot \text{Supervised}_{\text{GT}}$ loss

Summary of methods

Supervised methods (groundtruth labels)

e.g. Bertleff 2017, Gyori 2022

Supervised methods (MLE labels) e.g. Epstein 2022

Is there a middle ground?

Supervised methods (groundtruth labels)

e.g. Bertleff 2017, Gyori 2022

Supervised methods (MLE labels) e.g. Epstein 2022

Is there a middle ground?

Hybrid loss function during training:

Hybrid loss = $\alpha \cdot \text{Supervised}_{\text{MLE}}$ loss + $(1 - \alpha) \cdot \text{Supervised}_{\text{GT}}$ loss

(MLE labels)

Epstein 2022

- **Bias/variance tradeoff**
- Look beyond RMSE: misleading ٠ summary metric
- Supervised training has **practical** advantages over self-supervised
- Don't always use GT labels even if you have access to them
- Can adjust network performance by tailoring contribution of different labels

Tim Bray

Margaret Hall-Craggs

Gary Zhang

arXiv:2205.05587

Choice of training label matters: how to best use deep learning for quantitative MRI parameter estimation

Engineering and Physical Sciences Research Council²⁵

