MIML Workshop, May 13th 2022 CMIC, University College London London, UK

Data-driven, model-free, deep learning approach for quantitative MRI protocol design Francesco Grussu^{1,2}

¹Honorary Senior Fellow, Queen Square MS Centre, QS Institute of Neurology, Faculty of Brain Sciences, University College London (UCL), London, UK

²Beatriu de Pinós Fellow, Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain

Contact:

f.grussu@ucl.ac.uk fgrussu@vhio.net

- Introduction
 - quantitative MRI (qMRI)
 - qMRI protocol optimisation

- Introduction
 - quantitative MRI (qMRI)
 - qMRI protocol optimisation
- Select and Retrieve via Direct Upsampling network (SARDU-Net)
 - protocol selection: brain and prostate diffusion-relaxation imaging

- signal prediction: MUDI challenge
- methodological considerations

- Introduction
 - quantitative MRI (qMRI)
 - qMRI protocol optimisation
- Select and Retrieve via Direct Upsampling network (SARDU-Net)
 - protocol selection: brain and prostate diffusion-relaxation imaging

- signal prediction: MUDI challenge
- methodological considerations
- Progressive Subsampling for Oversampled Data (PROSUB)

- Introduction
 - quantitative MRI (qMRI)
 - qMRI protocol optimisation
- Select and Retrieve via Direct Upsampling network (SARDU-Net)
 - protocol selection: brain and prostate diffusion-relaxation imaging

- signal prediction: MUDI challenge
- methodological considerations
- Progressive Subsampling for Oversampled Data (PROSUB)
- Discussion and conclusions

Introduction: qMRI

• In quantitative MRI (qMRI), sets of multi-contrast images are analysed to estimate biophysical properties of tissues in each image voxel

Introduction: qMRI

• In quantitative MRI (qMRI), sets of multi-contrast images are analysed to estimate biophysical properties of tissues in each image voxel

- **qMRI protocol:** set of sequence parameter settings to use to produce such a multi-contrast MRI acquisition
- → e.g., TI = {80ms, 160ms, 320ms, 640ms, 1280ms, 2560ms}

Model-based protocol optimisation

• **Optimisation** → find a protocol that is <u>optimum</u> according to some criterion

Model-based protocol optimisation

• **Optimisation** → find a protocol that is <u>optimum</u> according to some criterion

• Model-based approach → optimality is based on an explicit signal model [1]

[1] Alexander D, Magnetic Resonance in Medicine 2008, doi: doi:10.1002/mrm.21646

Model-based protocol optimisation

• **Optimisation** → find a protocol that is <u>optimum</u> according to some criterion

- Model-based approach → optimality is based on an explicit signal model [1]
- 1. Define the signal model, e.g., $s = \sum_{n=1}^{N} f_n e^{-b D_n}$
- 2. Define the expected distribution of tissue parameters $\mathbf{p} = (f_1, D_1, f_2, D_2, ...)$
- 3. Define the noise level σ
- 4. Define an optimality criterion, e.g., minimum Cramer-Rao Bound $J^{-1}(b; \mathbf{p}, \sigma)$
- 5. Find *M* sequence parameter configurations that maximise optimality:

$$(b_1, b_2, \dots, b_M) = \arg\min\sum_{\mathbf{p}} J^{-1}(b; \mathbf{p}, \sigma)$$

[1] Alexander D, Magnetic Resonance in Medicine 2008, doi: doi:10.1002/mrm.21646

Data-driven protocol optimisation

Model-based protocol optimisation comes with assumptions

- > the signal model itself
- > the range of variation of tissue parameters
- ➤ the noise level

Data-driven protocol optimisation

- Model-based protocol optimisation comes with assumptions
- ➤ the signal model itself
- the range of variation of tissue parameters
- ➤ the noise level

• **Data-driven optimisation** \rightarrow learn compact protocols from rich pilot scans

- > no assumptions on signal models, tissue parameters, noise levels
- > test scans are commonly performed when setting up new studies
- > useful when the model of interest is not known/fixed

The SARDU-Net framework

Select And Retrieve via Direct Upsampling Network (SARDU-Net)

[2] Grussu F et al, Frontiers in Physics 2021, doi: 10.3389/fphy.2021.752208 https://github.com/fragrussu/sardunet

Selector and Predictor networks

Achitecture

 Multi-layer, fully-connected feedforward networks implemented in PyTorch

Network training

Loss based on the signal reconstruction error

 $L = \| s - u(s \odot w) \|_2^2$

 ADAM optimiser [3] with dropout regularisation

[3] Kingma DP and Ba J. Proc 3rd Int Conf Learn Represent (2015), http://arxiv.org/abs/1412.6980

SARDU-Net demonstration: brain MRI (1)

3 healthy subjects scanned on a 3T Philips Ingenia CX

saturation inversion recovery (SIR) [4] diffusion-weighted (DW) spin echo EPI

- ➤ 528 images with 32 unique (b,TI)
 - b = {0, 1000, 2000, 3000} s/mm²
 - TI = {70, 320, 570, 820, 1070, 1320, 1570, 1820} ms
 - 21 directions per (b,TI)
- ➤ TS = 300 ms (saturation time)
- ≻ TE = 90 ms
- ➤ TR = 2563 ms
- > 2.4 mm isotropic resolution
- \succ SENSE = 2
- Multiband factor = 3
- Scan time = 45 min

[4] Wang H et al, J Magn Reson 2017, doi:10.1016/ j.jmr.2016.11.015

SARDU-Net demonstration: brain MRI (2)

- **<u>Find subsets</u>** of $D = \{4, 8, 16\}$ out of M = 32 measurements
- Fit a model of diffusion-T1 relaxation [5,6] ...

$$s(b, \text{TI, TS}) = \frac{\sqrt{\pi}}{2} s_0 \left| 1 - e^{-\frac{\text{TI}}{T_1}} - \left(1 - e^{-\frac{\text{TS}}{T_1}} \right) e^{-\frac{\text{TI}}{T_1}} \right| e^{-bd_{\perp}} \frac{\operatorname{erf}\left(\sqrt{b(d_{\parallel} - d_{\perp})} \right)}{\sqrt{b(d_{\parallel} - d_{\perp})}}$$

- ... and predict fully-sampled signals based on the fitted parameters
- Assess the quality of reconstructed signals/metrics against:
 - random sub-protocols
 - uniform down-sampling
 - geometric down-sampling

[5] De Santis S et al, NeuroImage 2016, doi:10.1016/j.neuroimage.2016.07.037
[6] Kaden E et al, Magn Reson Med 2016, doi:10.1002/mrm.25734

Results: brain sub-protocol selection

A variety of contrasts are sampled

 SNR plays a role, but high b-values are always selected

Results: selection reproducibility

Sub-protocol selection consistent across training folds and initialisations

Some variability is seen

Results: parametric maps

For low sub-sampling rates, uniform and geometric sub-protocols work just fine

 For aggressive subsampling, SARDU-Net sub-protocols enable better map computation

Results: differences w. r. t. reference

TABLE 1 Results of the SARDU-Net, uniform and geometric sub-protocol comparison against a null distribution from randomly selected sub-protocols (brain data, T1-SMDT model).

	Sub- sampling	Signal MSE [a.u.]			d _∥ diff	ference [µm	² ms ⁻¹]	d_{\perp} dif	ference [µm	² ms ⁻¹]	<i>T</i> ₁	difference	[ms]	s ₀	difference	[a.u.]
D/M		Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3
16/32	SARDU- Net	0.162 (q=0.003)*	0.104 (q=0.09)	0.195 (q=0.001)*	- 0.048 (q=0.63)	– 0.018 (q=0.12)	0.026 (q=0.23)	0.026 (q=0.91)	0.028 (q=0.82)	0.017 (q=0.72)	13.2 (q=0.33)	9.2 (q=0.20)	21.1 (q=0.25)	0.384 (q=0.33)	0.238 (q=0.25)	0.540 (q=0.20)
	Uniform	0.170 (q=0.24)	(q=0.23)	0.204 (q=0.19)	0.005 (q=0.06)	0.019 (q=0.13)	– 0.023 (q=0.21)	- 0.008, (q=0.47)	- 0.012 (q=0.56)	- 0.010 (q=0.48)	6.0 (q=0.17)	– 7.6 (q=0.17)	–3.7 (q=0.03)*	0.221 (q=0.19)	– 0.157 (q=0.19)	- 0.453 (q=0.14)
	Geometric	0.177 (q=0.43)	0.107 (q=0.36)	0.224 (q=0.58)	0.028 (q=0.44)	0.019 (q=0.13)	0.051 (q=0.39)	0.002 (q=0.12)	– 0.003 (q=0.17)	0.007 (q=0.39)	- 19.1 (q=0.46)	18.0 (q=0.39)	- 7.9 (q=0.08)	0.410 (q=0.36)	0.229 (q=0.24)	0.082 (q=0.02)*
	95% range	[0.165; 0.482]	[0.103;	[0.199; 0.584]	[-0.121: 0.086]	[-0.207; 0.146]	[-0.258; 0.178]	[-0.040; 0.020]	[-0.093; 0.022]	[-0.061; 0.024]	[–177.4; 63.1]	[-214.7; 88.4]	[–274.0; 71.9]	[-7.088; 1.439]	[-9.902; 1.212]	[-9.54; 1.29]
8/32	SARDU- Net	0.182 (q=0.05)*	0.116 (q=0.12)	0.214 (q=0.04)*	- 0.033 (q=0.26)	0.127 (q=0.53)	0.021 (q=0.09)	0.045 (q=0.82)	0.002 (q=0.04)*	0.032 (q=0.57)	37.8 (q=0.40)	20.8 (q=0.23)	53.0 (q=0.36)	0.970 (q=0.37)	0.083 (q=0.04)*	0.992 (q=0.28)
	Uniform	0.545 (q=0.84)	(q=0.61)	0.558 (q=0.78)	0.018 (q=0.13)	0.027 (q=0.10)	- 0.039 (q=0.16)	– 0.027 (q=0.61)	- 0.038 (q=0.55)	- 0.037 (q=0.60)	455.8 (q=0.99)	547.9 (q=0.99)	351.9 (q=0.99)	18.01 (q=0.99)	18.27 (q=0.99)	12.20 (q=0.97)
	Geometric	0.235 (q=0.28)	0.189 (q=0.52)	0.294 (q=0.32)	- 0.471 (q=0.98)	-0.486 (q=0.97)	- 0.500 (q=0.97)	0.064 (q=0.91)	0.014 (q=0.27)	0.054 (q=0.74)	8.2 (q=0.14)	43.5 (q=0.40)	26.0 (q=0.17)	0.463 (q=0.18)	0.929 (q=0.41)	0.985 (q=0.28)
	95% range	[0.177; 1.483]	[0.107; 2.140]	[0.215; 1.984]	[–0.350; 0.344]	[-0.425; 0.384]	[-0.498; 0.391]	[-0.084; 0.053]	[-0.147; 0.042]	[-0.111; 0.053]	[–281.7; 109.0]	[–265.5; 146.5]	[–339.5; 92.2]	[–11.76; 2.825]	[–12.32; 2.913]	[–12.26; 2.107]
4/32	SARDU- Net	0.202 (q=0.002)*	0.122 (q=0.01)*	0.235 (q=0.001)*	0.016 (q=0.05)*	-0.210 (q=0.35)	0.093 (q=0.16)	0.035 (q=0.41)	0.045 (q=0.28)	0.046 (q=0.38)	53.6 (q=0.24)	81.8 (q=0.29)	99.5 (q=0.30)	1.56 (q=0.20)	1.46 (q=0.15)	2.46 (q=0.24)
	Uniform	0.659 (q=0.55)	(q=0.52)	0.649 (q=0.50)	– 0.181 (q=0.39)	- 0.211 (q=0.35)	– 0.218 (q=0.36)	-0.002 (q=0.03)*	– 0.017 (q=0.12)	– 0.015 (q=0.13)	196.7 (q=0.62)	260.7 (q=0.78)	107.8 (q=0.32)	4.27 (q=0.44)	3.04 (q=0.24)	0.07 (q=0.006)*
	Geometric	1.250 (q=0.66)	1.231 (q=0.66)	1.353 (q=0.66)	- 0.020 (q=0.07)	– 0.033 (q=0.06)	0.039 (q=0.06)	-0.031 (q=0.37)	- 0.122 (q=0.69)	- 0.068 (q=0.58)	- 59.7 (q=0.27)	-159.7 (q=0.53)	-213.0 (q=0.56)	- 2.18 (q=0.28)	-9.92 (q=0.67)	7.67 (q=0.58)
	95% range	[0.257; 2.544]	[0.138; 2.547]	[0.309; 0.294]	[-1.00; 0.543]	[-1.08; 0.550]	[-1.11; 0.596]	[-0.158; 0.174]	[-0.218; 0.153]	[-0.190; 0.180]	[–531.4; 277.9]	[–501.8; 294.5]	[-643.3; 250.4]	[–15.58; 8.85]	[-14.48; 7.02]	[-14.48; 5.24]

For each sub-protocol and sub-sampling factor, the table reports subject-wise signal MSE and mean differences of parametric maps with respect to maps obtained from fully sampled signals via dictionary fitting. The table also reports the 95% inclusion ranges of the random sub-protocol distribution, and the closest quantilia from the random sub-protocol distribution to which MSEs and parametric map differences (in absolute value) correspond. The lowest MSE/parametric map differences among SARDU-Net, uniform and geometric sub-sampling is shown in bold font. Asterisks flag cases where the quantile g is g < 0.05. SARDU-Net subprotocols enable the best signal reconstruction using a model they were not optimised for

 However, this does not imply that parametric maps are the closest to the reference

3 healthy subjects scanned on a 3T Philips Achieva

- DW spin echo EPI with variable TE
- ➤ 48 images with 16 unique (b,TE)
 - b = {0, 500, 1000, 1500} s/mm²
 - TE = {55, 87, 121, 150} ms
 - 3 directions per (*b*,TE)
- ➤ TR = 2800 ms
- resolution: 1.75 mm × 1.75 mm × 5 mm
- SENSE = 1.6, partial Fourier factor = 0.62
- Scan time = 6 min

SARDU-Net demonstration: prostate MRI (2)

- **<u>Find subsets</u>** of $D = \{9, 12\}$ out of M = 16 measurements
- Fit a model of diffusion-T2 relaxation [7] ...

$$s(b, \text{TE}) = s_0 \left(v_l \, e^{-b \, d_l - \frac{\text{TE}}{T_{2l}}} + (1 - v_l) \left(v_e \, e^{-b \, d_e - \frac{\text{TE}}{T_{2e}}} + (1 - v_e) \, e^{-b \, d_s - \frac{\text{TE}}{T_{2s}}} \right) \right)$$

- ... and predict fully-sampled signals based on the fitted parameters
- Assess the quality of reconstructed signals/metrics against:
 - random sub-protocols
 - uniform down-sampling
 - geometric down-sampling

[7] Chatterjee A et al, Radiology (2018) 287:864–73. doi:10.1148/radiol.2018171130

Results: prostate sub-protocol selection

• A variety of contrasts are sampled

- SNR plays a role on measurement selection
- However, for strong subsamplings, images with lower SNR may be preferred to images with higher SNR

Results: selection reproducibility

 Sub-protocol selection consistent across training folds and initialisations

 Some variability is seen

Results: parametric maps

 Parametric maps from SARDU-Net sub-protocols have similar quality to the reference maps on visual inspection

Results: differences w. r. t. reference

TABLE 2 | Results of the SARDU-Net, uniform and geometric sub-protocol comparison against a null distribution obtained from all possible sub-protocols (prostate data, HM-MRI model). The bold font indicates the lowest MSE/lowest parametric map difference among values obtained for SARDU-Net, uniform and geometric sub-samplings.

	Sub- sampling	Signal MSE [a.u.]			v_l difference				v difference		s ₀ difference [a.u.]		
D/M		Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3	Subj. 1	Subj. 2	Subj. 3
12/16	SARDU-Net	0.80 (q= 0.01)*	0.43 (q = 0.01)*	0.047 (q = 0.02)*	-0.0006 (q = 0.001)*	– 0.001 (q = 0.02)*	- 0.006 (q = 0.23)	0.01 (q = 0.04)*	0.001 (q = 0.006)*	– 0.028 (q = 0.32)	0.02 (q = 0.21)	0.006 (q = 0.07)	– 0.001 (q = 0.07)
	Uniform	1.13 (q = 0.88)	0.51 (q = 0.69)	0.051 (q = 0.31)	0.01 (q = 0.001)*	- 0.04 (q = 0.41)	- 0.012 (q = 0.40)	0.23 (q = 0.77)	- 0.21 (q = 0.65)	- 0.052 (q = 0.49)	- 0.08 (q = 0.70)	0.079 (q = 0.64)	0.015 (q = 0.51)
	Geometric	0.90 (q = 0.16)	0.44 (q = 0.14)	0.050 (q = 0.25)	0.0005 (q = 0.001)*	- 0.002 (q = 0.03)*	0.003 (q = 0.12)	0.06 (q = 0.06)	0.08 (q = 0.29)	0.062 (q = 0.55)	0.08 (q = 0.67)	0.076 (q = 0.63)	0.034 (q = 0.76)
	95% range	[0.88; 2.03]	[0.44; 0.76]	[0.048; 0.080]	[0.001; 0.39]	[- 0.07; 0.16]	[- 0.05; 0.06]	[- 0.22; 0.60]	[- 0.26; 0.37]	[- 0.127; 0.220]	[- 0.12; 0.24]	[- 0.30; 0.13]	[- 0.067; 0.049]
9/16	SARDU-Net	0.88 (q = 0.01)*	0.46 (q = 0.06)	0.052 (q = 0.06)	-0.00004 (q = 0.001)*	0.088 (q = 0.69)	0.025 (q = 0.41)	0.006 (q = 0.01)*	0.23 (q = 0.51)	0.031 (q = 0.17)	– 0.01 (q = 0.06)	0.04 (q = 0.17)	– 0.002 (q = 0.03)*
	Uniform	1.05 (q = 0.51)	0.58 (q = 0.56)	0.058 (q = 0.25)	-0.0006 (q = 0.001)*	- 0.059 (q = 0.34)	- 0.026 (q = 0.42)	0.214 (q = 0.49)	- 0.25 (q = 0.54)	- 0.087 (q = 0.42)	- 0.03 (q = 0.20)	0.12 (q = 0.55)	0.033 (q = 0.56)
	Geometric	0.97 (q = 0.35)	0.47 (q = 0.09)	0.053 (q = 0.09)	0.02 (q = 0.64)	0.048 (q = 0.28)	0.020 (q = 0.35)	- 0.181 (q = 0.42)	0.09 (q = 0.21)	0.044 (q = 0.23)	- 0.02 (q = 0.11)	0.05 (q = 0.18)	0.022 (q = 0.39)
	95% range	[0.89; 2.56]	[0.45; 1.27]	[0.050; 0.168]	[0.001; 0.44]	[– 0.073; 0.345]	[- 0.060; 0.167]	[– 0.251; 0.615]	[- 0.31; 0.37]	[– 0.157; 0.314]	[- 0.24; 0.60]	[- 0.40; 0.28]	[– 0.076; 0.117]

For each sub-protocol and sub-sampling factor, the table reports subject-wise signal MSE and mean differences of parametric maps with respect to maps obtained from fully sampled signals via dictionary fitting. The table also reports the 95% inclusion ranges of all sub-protocol distribution, and the closest quantile from the all sub-protocol distribution to which MSEs and parametric map differences (in absolute value) correspond. The lowest MSE/parametric map differences among SARDU-Net, uniform and geometric sub-sampling is shown in bold font. Asterisks flag cases where the quantile q is $q \le 0.05$.

- SARDU-Net sub-protocols enable the best signal reconstruction using a model they were not optimised for
- · However, this does not imply that parametric maps are the closest to the reference

qMRI upsampling

• The Predictor module effectively learns how to up-sample in qMRI space

UCL

qMRI upsampling

• The Predictor module effectively learns how to up-sample in qMRI space

- SARDU-Net was used in the 2019 MICCAI MUDI Challenge [8]
- > 1344 EPI volumes with variable (*b*,**g**,TI,TE) provided for 5 subjects
- > participants ask for subsets of 50, 100, 250, 500 measurements in 3 subjects
- > participants predict the full set of 1344 measurements in those 3 subjects

[8] Pizzolato M et al, Proc of Computational Diffusion MRI 2019, doi: 10.1007/978-3-030-52893-5_17

qMRI upsampling: MUDI (1)

-10

UCL

qMRI upsampling: MUDI (2)

Ranked 1st on the Challenge Day at **MICCAI 2019**

Ranked 2nd when the Challenge was reopened until Spring 2020

Methodological consideration

- SARDU-Net is promising but ...
- training stability could be improved
- > which architecture is best?
- can we avoid hard thresholding?

The PROSUB framework

UCL

Progressive Subsampling for Oversampled Data (PROSUB)

Outer loop

Network Architecture Search (NAS)

Inner loop

- Progressive construction of the measurement subset (recursive feature elimination)
- Measurements are scored iteratively (scored at iteration t depends on score at t 1)

[9] Blumberg SB et al, arXiv 2022, doi: 10.48550/arXiv.2203.09268

PROSUB performance (1)

As compared to SARDU-Net, PROSUB achieves:

> more stable and more informative sub-protocols

UC

As compared to SARDU-Net, PROSUB achieves:

- > more stable and more informative sub-protocols
- > more accurate predictions of fully sampled signals

MUDI Challenge M for N = 1344

		500	250	100	50
SARDU-Net-v1 [14,26]	Baseline	1.45 ± 0.14	1.72 ± 0.15	4.73 ± 0.57	5.15 ± 0.63
SARDU-Net-v2 $[4,15]$	Baseline	0.88 ± 0.10	0.89 ± 0.01	1.36 ± 0.14	1.66 ± 0.10
SARDU-Net-v2-BOF $[4,15]$	Baseline	0.83 ± 0.10	0.86 ± 0.10	1.30 ± 0.12	1.67 ± 0.12
SARDU-Net-v2-NAS	Baseline	0.82 ± 0.13	0.99 ± 0.12	1.34 ± 0.26	1.76 ± 0.24
PROSUB w/o NAS	Ours	0.66 ± 0.08	0.67 ± 0.09	$\textbf{0.88} \pm 0.07$	1.54 ± 0.11
PROSUB	Ours	$\textbf{0.49} \pm 0.07$	$\textbf{0.61} \pm 0.11$	0.89 ± 0.11	$\textbf{1.35}\pm0.11$

Discussion and conclusions

• Data-driven, model-free protocol design: alternative to model-based optimisation

- may be useful when the model to use is not known
- may be useful to shorten protocols in clinical studies if need arises
- do NOT replace model-based optimisation

Discussion and conclusions

• Data-driven, model-free protocol design: alternative to model-based optimisation

- may be useful when the model to use is not known
- may be useful to shorten protocols in clinical studies if need arises
- do NOT replace model-based optimisation

- SARDU-Net and its extension PROSUB are tools for model-free protocol design
 - *find out which measurements are informative*
 - potentially "enhance" a qMRI protocol

Discussion and conclusions

• Data-driven, model-free protocol design: alternative to model-based optimisation

- may be useful when the model to use is not known
- may be useful to shorten protocols in clinical studies if need arises
- do NOT replace model-based optimisation

- SARDU-Net and its extension PROSUB are tools for model-free protocol design
 - *find out which measurements are informative*
 - potentially "enhance" a qMRI protocol

- Future work will
 - extend the method to convolutional architectures
 - test its utility beyond imaging

arXiv

Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging

Francesco Grussu^{1,2,3}*, Stefano B. Blumberg², Marco Battiston¹, Lebina S. Kakkar⁴, Hongxiang Lin², Andrada Ianuş⁵, Torben Schneider^{6,7}, Saurabh Singh⁴, Roger Bourne⁸, Shonit Punwani⁴, David Atkinson⁴, Claudia A. M. Gandini Wheeler-Kingshott^{1,9,10}, Eleftheria Panagiotaki², Thomy Mertzanidou² and Daniel C. Alexander²

Progressive Subsampling for Oversampled Data -Application to Quantitative MRI

Stefano B. Blumberg¹, Hongxiang Lin^{1,3}, Francesco Grussu^{1,2}, Yukun Zhou¹, Matteo Figini¹, and Daniel C. Alexander¹

Acknowledgments

- Thanks to Marco Palombo, Ting Gong, Gary Zhang for the invitation
- Engineering and Physics Research Council (EPSRC EP/R006032/1)
- European Union Horizon 2020 programme (grant agreement 634541)
- Beatriu de Pinós Fellowship 2020 BP 00117, funded by the Secretary of Universities and Research (Government of Catalonia, Spain)
- "La Caixa" Foundation, Spain

Engineering and Physical Sciences Research Council

European Commission

