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Introduction: qMRI
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• qMRI protocol: set of sequence parameter settings to use to produce
such a multi-contrast MRI acquisition

à e.g., TI = {80ms, 160ms, 320ms, 640ms, 1280ms, 2560ms}
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• Model-based approach à optimality is based on an explicit signal model [1]

[1] Alexander D, Magnetic Resonance in Medicine 2008, doi: doi:10.1002/mrm.21646 

1. Define the signal model, e.g., 𝑠 = ∑!" 𝑓! 𝑒#$ %&

2. Define the expected distribution of tissue parameters 𝐩 = (𝑓&, 𝐷&, 𝑓', 𝐷', … )
3. Define the noise level 𝜎
4. Define an optimality criterion, e.g., minimum Cramer-Rao Bound 𝐽#& 𝑏; 𝐩, 𝜎
5. Find 𝑀 sequence parameter configurations that maximise optimality:

𝑏&, 𝑏', … , 𝑏( = argmin7
𝐩

𝐽#&(𝑏; 𝐩, 𝜎)
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• Model-based protocol optimisation comes with assumptions
Ø the signal model itself
Ø the range of variation of tissue parameters
Ø the noise level
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• Model-based protocol optimisation comes with assumptions
Ø the signal model itself
Ø the range of variation of tissue parameters
Ø the noise level

• Data-driven optimisation à learn compact protocols from rich pilot scans
Ø no assumptions on signal models, tissue parameters, noise levels
Ø test scans are commonly performed when setting up new studies
Ø useful when the model of interest is not known/fixed

Data-driven protocol optimisation



The SARDU-Net framework

[2] Grussu F et al, Frontiers in Physics 2021, doi: 10.3389/fphy.2021.752208
https://github.com/fragrussu/sardunet

1) Perform a few rich
qMRI acquisitions of
𝑀 measurements

2) Find a maximally
informative subset of
𝐷 < 𝑀 measurements

3) Use the qMRI protocol
of size 𝐷 for your
prospective study

Select And Retrieve via Direct Upsampling Network (SARDU-Net)



Selector and Predictor networks

Achitecture
• Multi-layer, fully-connected

feedforward networks
implemented in PyTorch

Network training
• Loss based on the signal

reconstruction error
à 𝐿 = 𝑠 − 𝑢(𝑠 ⊙𝑤) '

'

• ADAM optimiser [3] with
dropout regularisation

[3] Kingma DP and Ba J. Proc 3rd Int Conf Learn Represent (2015), http://arxiv.org/abs/1412.6980



SARDU-Net demonstration: brain MRI (1)

3 healthy subjects scanned on a 3T Philips Ingenia CX

Ø saturation inversion recovery (SIR) [4] diffusion-weighted (DW) spin echo EPI
Ø 528 images with 32 unique (b,TI)

§ b = {0, 1000, 2000, 3000} s/mm2

§ TI = {70, 320, 570, 820, 1070, 1320, 1570, 1820} ms
§ 21 directions per (b,TI)

Ø TS = 300 ms (saturation time)
Ø TE = 90 ms
Ø TR = 2563 ms
Ø 2.4 mm isotropic resolution
Ø SENSE = 2
Ø Multiband factor = 3
Ø Scan time = 45 min

[4] Wang H et al, J Magn Reson 2017, doi:10.1016/ j.jmr.2016.11.015



SARDU-Net demonstration: brain MRI (2)
• Find subsets of 𝐷 = {4, 8, 16} out of 𝑀 = 32 measurements

• Fit a model of diffusion-T1 relaxation [5,6] …

• … and predict fully-sampled signals based on the fitted parameters

• Assess the quality of reconstructed signals/metrics against:
§ random sub-protocols
§ uniform down-sampling
§ geometric down-sampling

[5] De Santis S et al, NeuroImage 2016, doi:10.1016/j.neuroimage.2016.07.037 
[6] Kaden E et al, Magn Reson Med 2016, doi:10.1002/mrm.25734



Results: brain sub-protocol selection

• A variety of
contrasts are
sampled

• SNR plays a
role, but high
b-values are
always
selected



Results: selection reproducibility

• Sub-protocol 
selection 
consistent 
across training 
folds and 
initialisations

• Some 
variability is 
seen 



Results: parametric maps

• For low sub-sampling 
rates, uniform and 
geometric sub-protocols 
work just fine

• For aggressive sub-
sampling, SARDU-Net 
sub-protocols enable 
better map computation



• SARDU-Net sub-
protocols enable 
the best signal 
reconstruction 
using a model 
they were not 
optimised for

• However, this 
does not imply 
that parametric 
maps are the 
closest to the 
reference

Results: differences w. r. t. reference



SARDU-Net demonstration: prostate MRI (1)

3 healthy subjects scanned on a 3T Philips Achieva

Ø DW spin echo EPI with variable TE
Ø 48 images with 16 unique (b,TE)

§ b = {0, 500, 1000, 1500} s/mm2

§ TE = {55, 87, 121, 150} ms
§ 3 directions per (b,TE)

Ø TR = 2800 ms
Ø resolution: 1.75 mm × 1.75 mm × 5 mm
Ø SENSE = 1.6, partial Fourier factor = 0.62
Ø Scan time = 6 min



SARDU-Net demonstration: prostate MRI (2)

• Find subsets of 𝐷 = {9, 12} out of 𝑀 = 16 measurements

• Fit a model of diffusion-T2 relaxation [7] …

• … and predict fully-sampled signals based on the fitted parameters

• Assess the quality of reconstructed signals/metrics against:
§ random sub-protocols
§ uniform down-sampling
§ geometric down-sampling

[7] Chatterjee A et al, Radiology (2018) 287:864–73. doi:10.1148/radiol.2018171130



Results: prostate sub-protocol selection

• A variety of contrasts are sampled

• SNR plays a role on measurement
selection

• However, for strong sub-
samplings, images with lower
SNR may be preferred to images
with higher SNR



Results: selection reproducibility

• Sub-protocol 
selection consistent 
across training folds 
and initialisations

• Some variability is 
seen 



Results: parametric maps

• Parametric maps from SARDU-Net sub-protocols have similar quality to the
reference maps on visual inspection



Results: differences w. r. t. reference

• SARDU-Net sub-protocols enable the best signal reconstruction using a model they were not optimised for
• However, this does not imply that parametric maps are the closest to the reference



qMRI upsampling

• The Predictor module effectively learns how to up-sample in qMRI space



qMRI upsampling

• The Predictor module effectively learns how to up-sample in qMRI space

• SARDU-Net was used in the 2019 MICCAI MUDI Challenge [8]
Ø 1344 EPI volumes with variable (b,g,TI,TE) provided for 5 subjects
Ø participants ask for subsets of 50, 100, 250, 500 measurements in 3 subjects
Ø participants predict the full set of 1344 measurements in those 3 subjects

[8] Pizzolato M et al, Proc of Computational Diffusion MRI 2019, doi: 10.1007/978-3-030-52893-5_17



qMRI upsampling: MUDI (1)
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qMRI upsampling: MUDI (2)

Ø Ranked 1st on the 
Challenge Day at 
MICCAI 2019

Ø Ranked 2nd when the 
Challenge was 
reopened until 
Spring 2020



Methodological consideration

• SARDU-Net is promising but …
Ø training stability could be improved
Ø which architecture is best?
Ø can we avoid hard thresholding?



The PROSUB framework
Progressive Subsampling for Oversampled Data (PROSUB)

[9] Blumberg SB et al, arXiv 2022, doi: 10.48550/arXiv.2203.09268

Outer loop
• Network Architecture Search (NAS)

Inner loop
• Progressive construction of the measurement subset (recursive feature elimination)
• Measurements are scored iteratively (scored at iteration 𝑡 depends on score at 𝑡 − 1 )



PROSUB performance (1)

As compared to SARDU-Net, PROSUB achieves:
Ø more stable and more informative sub-protocols



As compared to SARDU-Net, PROSUB achieves:
Ø more stable and more informative sub-protocols
Ø more accurate predictions of fully sampled signals

PROSUB performance (2)
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§ may be useful when the model to use is not known
§ may be useful to shorten protocols in clinical studies if need arises
§ do NOT replace model-based optimisation
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Discussion and conclusions

• Data-driven, model-free protocol design: alternative to model-based optimisation
§ may be useful when the model to use is not known
§ may be useful to shorten protocols in clinical studies if need arises
§ do NOT replace model-based optimisation

• SARDU-Net and its extension PROSUB are tools for model-free protocol design
§ find out which measurements are informative
§ potentially “enhance” a qMRI protocol

• Future work will
§ extend the method to convolutional architectures
§ test its utility beyond imaging
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